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Abstract. We examine the effects of introducing a wall or edge into a directed percolation
process. Scaling ansatze are presented for the density and survival probability of a cluster in
these geometries, and we make the connection to surface critical phenomena and field theory.
The results of previous numerical work for a wall can thus be interpreted in terms of surface
exponents satisfying scaling relations generalizing those for ordinary directed percolation. New
exponents for edge directed percolation are also introduced. They are calculated in mean-field
theory and measured numerically in 2+ 1 dimensions.

1. Introduction

The impact of boundaries on critical phenomena has been the focus of much research in
recent years (for extensive reviews of surface critical phenomena see [1, 2]). In the presence
of a boundary certain (surface) quantities no longer scale as they do in the bulk, but possess
different exponents which are dependent on the boundary conditions. In the past, most
research has focused on the effects of surfaces in equilibrium critical phenomena and far less
attention has been paid to boundaries in dynamical systems, such as in directed percolation
(DP). The DP universality class is thought to describe a variety of phase transitions from
non-trivial active into absorbing states [3] in processes such as epidemics, chemical reactions
[4, 5], catalysis [6], the contact process [7], and certain cellular automata [8, 9]. Since all
of these physical systems contain boundaries, an understanding of surface effects is very
important.

The microscopic rules for bulk (bond) DP ind + 1 dimensions are extremely simple;
any site at timet may make a connection to any of its 2d nearest neighbours at time
t + 1 with growth probabilityp. Below a threshold,1 = p − pc < 0, such a process
always dies, whereas for1 > 0 there is a finite probability of survival, where the system
enters the so-called active state [4]. At the transition point, the system is critical and scales
anisotropically, i.e. the correlation lengths in time (‖) and space (⊥) diverge with different
exponents,ξ‖ ∼ |1|−ν‖ andξ⊥ ∼ |1|−ν⊥ , respectively.

Above the upper critical dimension,dc = 4, these exponents can be calculated using
a simple mean-field theory. However, ford < dc, fluctuation effects become important,
and hence the computation of the exponents becomes a much harder task. The principal
analytic technique for this calculation employs the equivalence between DP and Reggeon
field theory [10, 11]. Using renormalization group techniques, the exponents can then
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be computed perturbatively in anε = dc − d expansion. These analytic techniques are
supplemented by simulations and series expansions, which mean that, for example, the
bulk critical exponents ford = 1 are known rather accurately [12]. Nevertheless, an exact
solution for DP remains an open, and extremely important, problem.

In this paper we will be exclusively interested in the effects of boundaries on DP clusters.
In order to isolate their effects, it is convenient to consider a semi-infinite system, where
the cluster grows from a seed close to the surface. Series expansions [13] and numerical
simulations [14] in 1+1 dimensions indicate that the presence of the wall alters several
exponents. In particular, the percolation probability (order parameter),

P1(1) ∼ 1β1 1 > 0 (1)

scales with an exponentβ1 rather than the standard exponentβ (the subscript ‘1’ refers to
the wall). However, the scaling properties of the correlation lengths (as given byν‖ and
ν⊥) are not altered. More surprising, however, is the appearance of an apparently integer
exponent describing the mean lifetime of a finite cluster in the presence of a wall:

〈t〉 ∼ |1|−τ1. (2)

Hereτ1 = ν‖ − β1 = 1.0002± 0.0003 in 1+ 1 dimensions and is conjectured to be exactly
unity [13]. If true, this would be a remarkable result, since none of the other exponents
for DP are known exactly, and one even lacks evidence for them to be rational numbers.
Note, however, that this situation is very different from the case of compact DP, where no
vacancies within a cluster are allowed. This model is relatively simple to solve and most
of the exponents, includingτ1, are integers (see [15] and references therein).

The purpose of this paper is to analyse the above results in the context of surface
critical phenomena. We first of all write down scaling ansatze for the survival probability
and cluster density which take boundary effects into account. From this we are able to derive
the behaviour of, for example, the cluster mass in terms of surface (and bulk) exponents.
We emphasize that the new exponentβ1 also describes the scaling of activity on the wall,
thusβ1 is a so-calledsurfaceexponent [1, 2]. We next consider the appropriate field theory
for DP in a semi-infinite geometry. This theory was first analysed by Janssenet al [16],
where the appropriate surface exponents were computed to first order inε = dc − d using
renormalization group techniques. The introduction of an inactive wall results in the so-
called ordinary surface transition at the bulk critical point, for which sites close to the wall
are less likely to be active than those in the bulk. In this picture, it is clear that only
certain exponents are altered; more precisely, the boundary introduces one new independent
exponent, while all the bulk exponents remain unaffected. By placing a finite seed close to
the boundary, however, the distribution functions of the emerging clusters become sensitive
to the new exponent. Unfortunately, these field theoretic methods yield little insight into
why τ1 should equal unity in 1+ 1 dimensions. Hence, we conclude that the apparently
integer value forτ1 must be a special property of DP in 1+ 1 dimensions, inaccessible to
perturbative expansions aboutdc.

Finally, we extend our analysis by allowing the wall to have an edge with opening angle
α. This leads to the introduction of new angle-dependentedgeexponents which govern the
properties of clusters started close to the edge. We solve the corresponding mean-field
theory and also determine the exponents numerically in 2+ 1 dimensions using computer
simulations.
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2. Wall analysis

In this section we shall discuss the exponents associated with the growth of DP clusters in
the presence of a wall. Some of our analysis will be similar in spirit to that of Grassberger
[17], who analysed the case of ordinary percolation in a semi-infinite system.

First of all, let us examine the effects of introducing a(d−1)-dimensional wall atx⊥ = 0
[x = (x‖, x⊥)] into a DP process. Note that the labels parallel (‖) and perpendicular (⊥)
refer here to directions relative to the wall (and not relative to the time direction). Consider
a cluster arising from a single seed located next to the wall att = 0. The probability that
an infinite cluster can be grown from this seed is given by the percolation probability (1)
which scales as1β1 for 1 > 0. Furthermore the scaling of the activity in the active state
at the wall, i.e. the probability that a surface point at a later time belongs to this infinite
cluster, also scales as1β1. Thusβ1 is an (independent) surface exponent in analogy with
surface critical phenomena for equilibrium statistical mechanics [1, 2] (more details can be
found in section 3, where we will also discuss how the surface-activity scaling1β1 crosses
over to the bulk-activity scaling1β in the active state).

For a given bulk universality class (such as that of DP), several surface universality
classes are possible. In our case, the lattice has simply been cut off and hence there will be
fewer active points close to the surface. This corresponds to the boundary condition for the
so-called ordinary transition (for whichβ1 > β). The survival probability (the probability
that the cluster is still alive at timet) has the form

P1(t,1) = 1β1ψ1(t/ξ‖) (3)

where the scaling functionψ1 is constant fort � ξ‖ [4]. Furthermore the presence of the
wall leaves the correlation length exponentsν⊥ andν‖ unaltered [2, 16]. The mean lifetime
of finite clusters (2) follows from the lifetime distribution−dP1/dt [13], thus yielding the
exponent

τ1 = ν‖ − β1. (4)

However, forν‖ < β1, the leading contribution to〈t〉 will be a constant, such that the above
scaling relation breaks down and is replaced byτ1 = 0. Note, however, if one instead
considers a spacetime geometry where the wall direction departs from the time direction,
then all the above quantities will, as usual, cross over to bulk scaling (see also [13]).

For the densityρ1 at the point (x, t) of a cluster growing from a single seed located
next to the wall we make the scaling ansatz

ρ1(x, t,1) = 1β1+βf1(x/ξ⊥, t/ξ‖) (5)

where the cluster density is defined to be the coarse-grained average density of active points.
This ansatz may be properly justified using the field theory analysis of section 3, however,
a more intuitive justification of the prefactors may be given as follows. The first factor of
1β1 comes from the probability that an infinite cluster can be grown from the seed. The
second factor of1β arises from the bulk scaling of activity in the active state, i.e. the
(conditional) probability that the point (x, t) belongs to the infinite cluster grown from the
seed (see also [17]). The shape of the cluster is governed by the scaling functionf1. In
(5) we have assumed that the density is measured at a finite angleϑ away from the wall
(where sinϑ = x⊥/x), and suppressed theϑ-dependence off1. In contrast, if the density
is measured along the wall,ϑ = 0, then the appropriate ansatz reads

ρ11(x, t,1) = 12β1f11(x/ξ⊥, t/ξ‖) (6)

as we pick up a factor1β1 rather than1β for the probability that (x, t) at the wall belongs
to the infinite cluster grown from the seed. In 1+ 1 dimensions,ϑ has, of course, no
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meaning. Instead, we have a crossover toρ11(t,1) = 12β1f11(t/ξ‖) close to the wall. We
also remark that for a seed located a (finite) distance away from the wall, the expressions
are more complicated, although the above scaling forms (5) and (6) are still applicable for
large times after a crossover from the bulk scalingρ(x, t,1) = 12βf (x/ξ⊥, t/ξ‖).

By integrating the cluster density (5) over space and time, we arrive at the average size
of finite clusters grown from seeds on the wall,

〈s〉 ∼ |1|−γ1 (7)

such that

ν‖ + dν⊥ = β1+ β + γ1. (8)

Hence, the surface exponentγ1 is related to the previously defined exponents via a scaling
law that naturally generalizes the usual(d + 1)-dimensional hyperscaling relation

ν‖ + dν⊥ = 2β + γ. (9)

It was noted by the authors of [13] that relation (9) is not fulfilled when the exponents for
the wall geometry are substituted. Within the context of surface critical phenomena this
‘failing’ of hyperscaling is perfectly natural, since (9) is only a relation for (the unaltered)
bulk exponents. The results of previous numerical simulations with a wall [13, 14] are in
fact in very good agreement with the modified hyperscaling relation (8). We also note in
passing that another generalization of hyperscaling has recently been proposed, although in
the rather different context of a (bulk) model with multiple absorbing states [18], where the
exponentβ ′ in the survival probability depends continuously on the density of the initial
configuration. Such a generalization of hyperscaling might also apply to recent results in
[19] for DP with different fractal seeds as initial conditions.

Besides integrating the density (5), we can also integrate the density on the wall (6)
over the(d − 1)-dimensional wall and time. This integration yields the average (finite)
cluster size on the wall,

〈swall〉 ∼ |1|−γ1,1 (10)

where

ν‖ + (d − 1)ν⊥ = 2β1+ γ1,1. (11)

However, in higher dimensions (d ≈ 2 being a marginal case) this relation is not fulfilled
as it would predict a negativeγ1,1. For this case,γ1,1 = 0, reflecting a constant contribution
to (10), cf the comment after (4).

The cluster density also contains information on the connectivity correlations, as it is
proportional to the probability that the seed at the origin is connected to the point (x, t).
At criticality, we obtain from (5) the power-law decay

ρ1(x, t) = x−(β1+β)/ν⊥ f̃1(t/x
z) (12)

wherez = ν‖/ν⊥ is the dynamical exponent. This is nothing but the critical surface-bulk
correlation function with prefactorx−(d+η1,0), which defines the exponentη1,0 describing the
power-law decay of correlations between the surface and the bulk. Hence,

β1+ β = ν⊥(d + η1,0) (13)

which generalizes the normal DP relation

2β = ν⊥(d + η) (14)

with η the anomalous dimension in the bulk. Furthermore, by identifying (6) with the
surface–surface correlation function, it follows that

2β1 = ν⊥(d + η1,1) (15)

whereη1,1 is the anomalous surface dimension. As expected, 2η1,0 = η1,1+ η.
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3. Field-theoretical analysis

We now turn to the field-theoretic description of DP with a wall and its connections with
the above scaling picture. The action appropriate for DP with a wall atx⊥ = 0 is given by
[16]

S = Sbulk+ Ssurface (16)

Sbulk =
∫

ddx
∫

dt
(
φ̄[∂t −D∇2−1]φ + 1

2u[φ̄φ2− φ̄2φ]
)

(17)

Ssurface= −
∫

dd−1x

∫
dt 1sφ̄sφs. (18)

Here Sbulk is simply the action from Reggeon field theory [10], whereφ is the local
activity, φ̄ is the response field, and where we have definedφs = φ(x‖, x⊥ = 0, t) and
φ̄s = φ̄(x‖, x⊥ = 0, t). The surface term inSsurface corresponds to the most relevant
interaction consistent with the symmetries of the problem and which also respects the
absorbing state condition. Alternatively we can rewrite the actionS in the form of a
Langevin-type equation for the local activityφ(x, t),

(∂t −D∇2−1)φ(x, t)+ 1
2uφ(x, t)

2+ η(x, t) = 0 (19)

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t ′)〉 = uφ(x, t)δd(x− x′)δ(t − t ′) (20)

where η(x, t) is a Gaussian noise term. The multiplicative factorφ(x, t) in the noise
correlator reflects the fact thatφ = 0 is the absorbing state. The presence of the wall
implies the boundary condition atx⊥ = 0 of D∂x⊥φ|s = −1sφs .

For the systematic analysis of DP below the upper critical dimension, the action (16)–
(18) remains the more useful description. One can show that, in the limitt → ∞, the
system reaches a steady-state, where the order parameter〈φ(x⊥,1)〉 develops a profile in
the direction away from the wall:

〈φ(x⊥,1)〉 = 1βϕ(x⊥/ξ⊥) (21)

where the exponentβ describes the density in the bulk,x⊥ � ξ⊥, for which the scaling
function ϕ is constant. The angular brackets denote averaging with respect to the action
(16)–(18). Close to the wall, however, the order parameter scales with a different exponent
than β. This is in analogy with surface critical phenomena for equilibrium statistical
mechanics. The new exponent is denoted byβ1, and for1 > 0 it governs the other
limit of the scaling functionϕ, giving

〈φ(x⊥,1)〉 ∼ 1β1x
(β1−β)/ν⊥
⊥ x⊥ � ξ⊥. (22)

It is now a standard procedure to derive the form of the correlation functions within the
field theory. These expressions involve the sameβ-exponents as defined above in equations
(21) and (22), and are identical to the scaling forms derived earlier in section 2 (with the
exception of an additional inhomogeneous term which is present for the surface–surface
correlation function [2]). This establishes that theβ-exponents defined in the field theory
above are indeed the same as theβ-exponents used earlier in the scaling theory, which were
defined in terms of a percolation probability, as in equation (1). Note that the vanishing of
(22) in the limit x⊥ → 0 is simply an artefact of the continuum analysis (on a lattice the
density on the wall simply scales as1β1).

Turning now to other aspects of the field theory, it is also straightforward to show
(to all orders in perturbation theory) that the correlation length exponents are everywhere
unchanged by the wall—as are all the exponents in thebulk (see [2, 16]). Furthermore the
surface exponentβ1 is theonly new exponent introduced by the wall. The critical exponents
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can be calculated in a perturbativeε expansion around the upper critical dimensiondc = 4.
Hence, quoting from [16], we have (identical to the case of DP without a boundary)

β = 1− ε
6
+O(ε2) ν‖ = 1+ ε

12
+O(ε2) ν⊥ = 1

2
+ ε

16
+O(ε2) (23)

where ε = 4− d. These exponents are related via hyperscaling (9) toγ governing the
divergence of the bulk susceptibility (average cluster size) and via (14) toη governing the
decay of connectivity correlations at criticality. Furthermore anε expansion calculation for
the surface exponentβ1 yields [16]

β1 = 3

2
− 7ε

48
+O(ε2). (24)

From the field theory of [16], it is not hard to verify that (8) is the appropriate generalization
of (9), relatingβ1 to

γ1 = 1

2
+ 7ε

48
+O(ε2) (25)

which in terms of the field theory describes the divergence of thesurfacesusceptibility due
to the application of an infinitesimal bulk field.

The above results are certainly consistent with the numerical work of [13, 14], where
ν‖, ν⊥ were measured in the presence of a wall and found to be unchanged from their bulk
values. The behaviour ofβ1 in (24) is also in qualitative agreement with the available data.
Numerically, however, the value of the exponentτ1 was found to be extremely close to
unity in 1+ 1 dimensions. This is in contrast to the above series results, which give

τ1 = −1

2
+ 11ε

48
+O(ε2) (26)

using the scaling relation (4). Note that the mean-field value ofτ1 appears to be negative.
This is not in fact the case—following the discussion after (4), we haveτ1 = 0 in high
enough dimensions. Nevertheless from (26) we see that the puzzle of whyτ1 seems to
equal unity in 1+ 1 dimensions cannot be answered by perturbative expansions about
dc = 4. Therefore this feature would appear to be a special property of DP with a wall in
1+ 1 dimensions. This conclusion is certainly in agreement with the(2+ 1)-dimensional
simulations of [14].

4. Edge analysis

We next turn to the case of DP in an edge geometry, where the cluster is started on an edge.
It has been known for some time that the presence of an edge introduces new exponents,
independent of those associated with the bulk or with a surface (see [20] for a discussion
in the context of equilibrium critical phenomena, or [17] in the context of percolation).
However, such edge geometries have not yet (to our knowledge) been analysed for the case
of DP.

Consider a system, where we allow the wall to have an edge with an angleα. Hence,
the edge can be viewed as the(d − 2)-dimensional intersection of two(d − 1)-dimensional
walls. By placing the seed next to this edge, the surface exponentβ1 is replaced by the edge
exponentβ2(α) (where of courseβ1 = β2(π)). Following the same arguments as before,
the survival probability for a cluster starting from the edge has the scaling form

P2(t,1) = 1β2ψ2(t/ξ‖) (27)

whereψ2 is constant fort � ξ‖. In other words, the percolation probability scales as
P2(1) ∼ 1β2. Furthermore, we also have the new scaling ansatz for the cluster density

ρ2(r, t,1) = 1β2+βf2(r/ξ⊥, t/ξ‖) (28)
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wherer is the radial coordinate in a system of spherical polar coordinates centred on the
speed. This ansatz generalizes (5), i.e. it applies for directions away from the edge and the
walls. By replacingβ with β1 or β2, we obtain the corresponding results for the density
along the wall or the edge, respectively. Moreover, in analogy with (7) and (8) for seeds
on a wall, we obtain the average (finite) size〈s〉 ∼ |1|−γ2 of clusters grown from a seed
next to an edge, by integrating (28) over space and time. This yields the relation

ν‖ + dν⊥ = β2+ β + γ2. (29)

Similarly, by integrating the corresponding wall density over the(d − 1)-dimensional wall
and time, we obtain the average size of cluster activity on the wall due to a seed at an edge,
〈swall〉 ∼ |1|−γ2,1, with

ν‖ + (d − 1)ν⊥ = β2+ β1+ γ2,1. (30)

Let us once more remark that scaling relations such as (29) and (30) are only valid as long
as the predictedγ -exponents are non-negative. Our results indicate thatγ2 should be zero
for small enough anglesα in any dimension, and the same holds forγ2,1 also for somewhat
larger angles. In principle, we can also define an exponent for the average cluster size at
the edge by〈sedge〉 ∼ |1|−γ2,2, with ν‖ + (d − 2)ν⊥ = 2β2+ γ2,2. However, after inspecting
our numerical results in the next section, we conclude thatγ2,2 should always be zero, with
the possible exception ofα close to 2π in d = 2. We also note that the wall geometry in
section 2 is a special case, such thatγ2(π) = γ1 andγ2,1(π) = γ1,1, whereasγ2,2 strictly
refers to the edge.

As before, it is also straightforward to identify the various cluster densities with
correlation functions between different domainsp andq. It follows that

βp + βq = ν⊥(d + ηp,q) 2ηp,q = (ηp,p + ηq,q) (31)

with p, q = 0 (bulk), 1 (wall) or 2 (edge).
We now proceed to calculate the exponents of this geometry in mean-field theory. Much

of this calculation can be taken over directly from [20] where a similar mean-field calculation
was performed for the case of an Ising model in an edge geometry. The appropriate terms in
the action (17), (18) yield mean-field equations with some resemblance to those of the Ising
case. Nevertheless the presence of the time derivative and a different nonlinear term leads
to some important modifications. However, if, at the mean-field level, we are interested in
calculating either the equal-time two-point correlation function or the susceptibility then we
can immediately take over the results from [20]:

η 0,0 = η = 0 η1,1 = 2 η2,2 = 2π/α (32)

and

γ2 = 1− π/2α. (33)

Furthermore, the correlation exponentsν‖ andν⊥ are again everywhere unchanged by the
presence of the edge, and retain their usual bulk values.

However, a calculation of the density exponentβ2 requires an analysis of the nonlinear
term. Hence this exponent will differ from that in the edge Ising model. In our case, using
equation (19), the mean-field local activity for1 > 0 must obey the equation

D∇2φ +1φ − (u/2)φ2 = 0 (34)

with the condition thatφ → 21/u in the bulk. Note thatφ is the activity in the steady
state and is translationally invariant along the edge direction. Withr⊥ the perpendicular
distance to the edge, the solution has the following scaling form

φ(r⊥) = (1/u)F (r⊥/ξ⊥, α). (35)
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As r⊥ → 0 the quadratic term in equation (34) can be neglected, hence we obtain the Ising
result, withφ behaving asrη2,2/2

⊥ . Usingν⊥ = 1
2 we then haveφ ∝ 11+π/2α, and hence

β2 = 1+ π/2α. (36)

As a check, we note that this satisfies (29) and (31) at the upper critical dimensiondc = 4.
Similarly, we naively obtain the mean-field valuesγ2,2 = 2γ2,1 = −π/α < 0, which means
thatγ2,2 = γ2,1 = 0, as discussed above. Of course we could become more sophisticated and
use a field-theoretic approach to calculate the fluctuation corrections to all these mean-field
values in anε expansion arounddc = 4. Nevertheless below the upper critical dimension,
we can still expect the mean-field values, and their dependence on the angleα, to be
qualitatively followed.

Let us also mention that these ideas can easily be generalized in 3+ 1 dimensions
and higher where one, for example, can consider a cluster originating from a seed at the
intersection of three walls. The percolation probability and cluster densities will then scale
with a newcorner exponentβ3 satisfying scaling relations analogous to (29) and (31).

5. Simulations

In this section we report the results of simulations of edge DP in 2+ 1 dimensions for
opening angles ofα = π/2, 3π/4, π and 5π/4. We use(2 + 1)-dimensional bond
DP on a bcc lattice wherepc = 0.287 338(3), and with bulk exponentsβ = 0.584(5),
ν‖ = 1.295(6), ν⊥ = 0.734(5), and the dynamic exponentz = ν‖/ν⊥ = 1.765(3) [21, 22].
In the simulations we start from one seed located on the edge (wall forα = π ) and grow
the DP cluster. Typically we average over 100 000 clusters in order to reduce the error bars
to a few percent.

We measure the average position of activity

〈r2〉 = 1

N(t,1)

∫
dV r2ρ2(r, t,1) = t2/z h(t1ν‖) (37)

wherer is the distance from the seed and the normalization quantityN(t,1) is the mass
of the cluster at timet . Thus the average position yields the dynamic exponentz = ν‖/ν⊥.
Our results show thatz retains its bulk value in agreement with the theoretical prediction.
Accordingly, we can use the bulkz value in our further analysis in order to obtain better
estimates for theβ2-exponents.

Next, we measure the critical survival probability which has a power-law behaviour

P2(t) ∼ t−β2/ν‖ (38)

obtained from equation (27). The same power law also describes the number of active sites
(for surviving clusters) on the edge at criticality as a function of time. We also measure the
probability of having a cluster of masss which has the critical scaling behaviour

p(s) ∼ s−τs (39)

whereτs = 1+ β2/(ν‖ + dν⊥ − β) (cf [14]). In addition, we measure the average number
of active sites at criticality (averaged over all clusters) as a function of time by integrating
(28) over space,

N(t) ∼ td/z−β/ν‖−β2/ν‖ . (40)

However, if we average only over clusters which survive to infinity, then we have instead

Nsurv(t) ∼ td/z−β/ν‖ . (41)

By measuring the above quantities we can extract various estimates for the ratioβ2/ν‖
which eventually lead to the estimates forβ2 listed in table 1. In tables 2 and 3 we list our
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Table 1. Estimates for theβ2 exponents for(2+ 1)-dimensional edge DP together with the
mean-field values. The bulk and(1 + 1)-dimensional wall estimates [13, 14] are listed for
reference. The mean-field valueβ(MF)

2 is obtained from equation (36). Recall thatβ2(π) = β1.

Angle (α) π/2 3π/4 π 5π/4 bulk

β
(1+1)
1 0.7338± 0.0001 0.2765± 0.0001
β
(2+1)
2 1.6± 0.1 1.23± 0.07 1.07± 0.05 0.98± 0.05 0.584± 0.005
β
(MF)
2 2 5/3 3/2 7/5 1

Table 2. Estimates for theτ2 exponents for(2+1)-dimensional edge DP. The bulk and(1+1)-
dimensional wall estimates [13, 14] are listed for reference. Note thatτ

(MF)
2 = 0. Recall that

τ2(π) = τ1.

Angle (α) π/2 3π/4 π 5π/4 bulk

τ
(1+1)
1 1.0002± 0.0003 1.4573± 0.0002
τ
(2+1)
2 0.1± 0.05 0.20± 0.05 0.26± 0.02 0.38± 0.04 0.711± 0.007

Table 3. Estimates for theγ2 exponents for(2+ 1)-dimensional edge DP together with the
mean-field values. The bulk and(1 + 1)-dimensional wall estimates [13, 14] are listed for
reference. The mean-field valueγ (MF)

2 is obtained from equation (33). Recall thatγ2(π) = γ1.

Angle (α) π/2 3π/4 π 5π/4 bulk

γ
(1+1)
1 1.8207± 0.0004 2.2777± 0.0001
γ
(2+1)
2 0.7± 0.1 1.0± 0.1 1.05± 0.02 1.20± 0.05 1.592± 0.009
γ
(MF)
2 0 1/3 1/2 3/5 1

estimates forτ2 and γ2. These quantities are obtained by measuring the average lifetime
〈t〉 and average size〈s〉 for finite clusters for different values of1 and then obtaining
the exponents by carrying out a power-law fit. We observe that the results in 2+ 1
dimensions qualitatively show the behaviour expected from the mean-field predictions. With
one exception, we confirm that the scaling relation

τ2 = ν‖ − β2 (42)

(cf the analogous expression (4) for a wall) and hyperscaling (29) are both fulfilled when
error bars are taken into account. This exception occurs for the smallest angle where the
relation (42) is not fulfilled. This is because as soon asβ2 becomes larger thanν‖ (as is the
case forα = π/2) the above relation breaks down, and instead the mean cluster lifetime
becomes constant (i.e.τ2 = 0), cf the comment after (4). Using our results forβ2 we find
that in 2+ 1 dimensionsτ2 will reach its mean-field value of zero for an angle in between
π/2 and 3π/4. Whenτ2 approaches zero the correction to scaling terms in the expression
for 〈t〉 will affect the scaling making it difficult to obtain precise values.

6. Conclusions

We have analysed the impact of a wall or edge on a DP process in terms of surface critical
phenomena. The presence of an inactive wall results in anordinary phase transition between
active and inactive surface states at the bulk critical point. A description of this transition
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requires the introduction of one further independent exponent in addition to those present
in the bulk. We have formulated a scaling ansatz for clusters grown near the surface,
which incorporates these surface effects. We have also used the connection between DP
and Reggeon field theory to justify our scaling ansatze and to examine the nature of the
surface exponents. It turns out that the conjecture forτ1 = 1 in 1+1 dimensions cannot be
explained within theε expansion. We also remark that it would be possible to examine other
surface universality classes for evidence of rational exponents, particularly at thespecial
transition. This transition occurs when the surface bond probabilities are enhanced such that
not only the bulk, but also the surface, is at criticality. We note that the transition at this
(multicritical) point requires the introduction oftwo new independent exponents. Lastly,
we have for the first time analysed edge exponents in DP for edges with variable opening
angles. We have derived the mean-field exponents and computed numerical values from
computer simulations in 2+ 1 dimensions.
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